Roll No.

FOURTH SEMESTER EXAMINATION 2021-22
 M.Sc. Mathematics
 Paper - V
 Operation Research - II

Time : 3.00 Hrs.
Max. Marks : 80
Total No. of Printed Page : 04
Mini. Marks : 29

Note:- Question paper is divided into three sections. Attempt question of all three section as per direction Distribution of marks is given in each section.

Section 'A'

Very short answer question (in few words)
Q. 1 Attempt any six questions from the following :
$6 \times 2=12$
(i) State Bellman's principle of optimality in dynamic programming.
(ii) Who was developed first a symmetric procedure for solving an all integer programming problem.
(iii) Explain strategy and value of the game.
(iv) Define general non-linear programming problem with suitable examples.
(v) Explain quadratic programming.
(vi) Explain Separable programming.
(vii) Write characteristic of queuing system.
(viii) Write steady state equations of the system model-I.
$(M / M / 1):(\infty / F C F S)$.
(ix) What are the applications of dynamic programming.
(x) Define inventory with suitable examples.

Section 'B'

Short answer type question (in 200 words)

Q. 1 Attempt any four questions from the following :
(i) Write characteristic of dynamic programming problem.
(ii) Explain the theory of dominance rule in the solution of rectangular games with suitable examples.
(iii) Customers arrive at a sales counter manned by a single person according to a poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of a customer and queue length.
(iv) Reduce the following games to (2×2) by graphical method \& hence solve the games :

$\left.\begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{ccc} & & \\ I & I I & I I I \\ I \end{array} \begin{array}{ccc} 1 & 3 & 11 \\ & I I \end{array}\right]$	

(v) Describe Branch and Bound technique to solve an integer programming problem.
(vi) Find the maximum value of $z=x_{1}^{2}+2 x_{2}^{2}+4 x_{3}$ subject to the constraints $\quad x_{1}+2 x_{2}+x_{3} \leq 8$

$$
\text { where } x_{1}, x_{2}, x_{3} \geq 0
$$

(vii) Find the system of steady state equation of the model - III.
$(M / M / 1):(N / F C F S)$.

Section 'C'

Long answer/Essay type question.

Q. 3 Attempt any four questions from the following questions :
$4 \times 12=48$
(i) Use dynamic programming to solve the following linear programming problem:

Max.	$z=3 x_{1}+5 x_{2}$
Subject to constraints	$x_{1} \leq 4$
	$x_{2} \leq 6$
	$3 x_{1}+2 x_{2} \leq 18$ where $x_{1}, x_{2} \geq 0$

(ii) Solve the following L.P.P. by Gomory technique :

Max	$z=3 x_{2}$
Subject to the constraints	$3 x_{1}+2 x_{2} \leq 7$
	$x_{1}-x_{2} \geq-2$ Where $x_{1}, x_{2} \geq 0$ and are integers.

(iii) For any (2×2) two person zero sum game without any saddle point and having pay-oof matrix for player A as

$$
\begin{array}{cc}
& \text { Player B } \\
& I \\
\text { Player } A \\
& I \\
I & I
\end{array}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Find the optimum mixed strategies.
(iv) Find the system of steady state equation and solution of the model-I.
$(M / M / 1):(\infty / F C F S)$.
(v) Apply Wolfe's Method to solve the quadratic programming problem:

$$
\text { Max. } \quad z=2 x_{1}+3 x_{2}-2 x_{1}^{2}
$$

Subject to the constraints

$$
\begin{aligned}
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 2 \text { Where } x_{1}, x_{2} \geq 0
\end{aligned}
$$

(vi) Solve the following quadratic programming problem by using Beale's method:

Max.	$z=2 x_{1}+3 x_{2}-x_{1}^{2}$
Subject to the constraints	$x_{1}+2 x_{2} \leq 4$ Where $x_{1}, x_{2} \geq 0$

(vii) With the help of Kuhn-Tucker conditions solve the following non-linear programming problem:

Max.	$z=2 x_{1}-x_{1}^{2}+x_{2}$
Subject to the constraints	$2 x_{1}+3 x_{2} \leq 6$
	$2 x_{1}+x_{2} \leq 4$ Where $x_{1}, x_{2} \geq 0$

--00--

